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Study of the Dispersion Characteristics
of Planar Chiral Lines
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Abstract—This paper analyzes the dispersion characteristics of
the fundamental modes of some basic chiral planar transmission
lines: microstrip, slot-line, coplanar waveguide (CPW), and a
coupled microstrip line, including the possible frequency depen-
dence of the chiral parameters. The dispersion characteristics are
computed after finding the zeros of the determinantal equation
resulting from the application of the Galerkin method in the spec-
tral domain. Because of the biisotropic nature of the substrate,
a 4 � 4 matrix differential equation has been solved to obtain
the spectral dyadic Green’s function (SDGF). This function will
be explicitly obtained in terms of a closed-form 4� 4 transition
matrix that relates the transverse electromagnetic fields at the
upper and lower interface of the chiral substrate. This fact is
key to developing fast computer codes since it avoids numerical
matrix exponentiations. The numerical results have shown that
the chiral nature of the substrate basically adds an additional pa-
rameter to control the propagation characteristics of the analyzed
lines and, in general, makes the lines more dispersive, showing
even resonant-like behavior.

Index Terms—Chiral media, Galerkin method, planar trans-
mission lines, spectral domain.

I. INTRODUCTION

I N RECENT years, the possibility of manufacturing bi-
isotropic reciprocal materials (generally known as chiral

media) at microwave and millimetric frequencies has raised
a great theoretical and technological interest. As is well
known, chiral composites can be made by embedding chiral
microstructures in a low-loss dielectric host medium [1]. The
specific electromagnetic properties of chiral materials, which
imply an additional cross coupling in the constitutive relations,
promisingly extend the possibilities of the isotropic media for
designing microwave devices [1]. Thus, numerous applications
have been proposed using chiral media, including:

1) antireflection coatings;
2) high-reflection coatings;
3) rotating polarization devices;
4) low reflection antenna radomes; etc.

Recently, a new class of artificial chiral materials suitable for
microwave waveguides in planar technology was proposed in
[2]. These new media are based on the inclusion of small
magnetostatic-wave resonators with a surface metallization in
a host medium and are expected to make chiral planar mi-
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crowave waveguides and transmission lines real technological
devices in the very near future.

The effect of bi–iso/anisotropic media on the guided elec-
tromagnetic propagation and antenna has also aroused the
interest of many researchers. Thus, a great deal of work
on the electromagnetic propagation in waveguides filled with
biisotropic/chiral materials has been reported in the literature
(e.g., [3]–[8], just to mention a few). The use of chiral
media in microstrip antennas has also been considered in
[9]–[11]; specifically, the possibility of reducing the losses
due to surface-waves radiation in a microstrip antenna using
a chiral substrate have been proposed in [9], although this
topic has been discussed in [10]. Propagation characteristics
of bi–iso/anisotropic transmission lines has also given rise
to some interesting works. The dispersion characteristics of
the fundamental mode of a microstrip on a chiral substrate
are obtained in [12] and [13] and on a layered gyromag-
netic and chiral substrate in [14]. In [15] and [16], the
authors develop a quasi-TEM analysis of an inhomogeneous
bi–iso/anisotropic multiconductor transmission line, extending
the well-known telegrapher’s equations to these media. More
recently, transmission-line models are proposed for hybrid
modes in bianisotropic structures in [17].

Similar to other types of planar lines, and provided that
the substrates have the proper symmetry, the dispersion char-
acteristics of general bianisotropic layered and multiconductor
transmission lines can be studied using techniques based on the
well-known spectral-domain analysis (SDA). In this paper, the
general procedure shown in [18] is now applied and adapted to
study the dispersion characteristics of the fundamental modes
of several planar lines with chiral substrates. It should be
pointed out that this paper is specifically focused on chiral
media, i.e., those reciprocal biisotropic media whose existence
is out of controversy—nonreciprocal biisotropic media have
neither been found nor manufactured, and the possibility
of their existence is currently under discussion in the open
literature [19], [20].

Before applying the Galerkin method in the spectral domain,
the spectral dyadic Green’s function (SDGF) of the structure
has to be obtained. The SDGF for a grounded chiral slab has
been determined in previous work using circularly polarized
potential functions [10], [12]. In this paper, the SDGF will
be computed in a different way by solving the Maxwell
equations in the chiral layer using the 44 matrix differential
scheme introduced in [21], which is often applied in different
contexts in the literature [22]–[29]. Following this scheme,
the 4 4 transition matrix relating the Fourier transform
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Fig. 1. Generic planar chiral transmission line.

of the transverse electromagnetic fields at the upper and
lower interfaces of the layer will be determined. Although
the transition matrix of a general bianisotropic layer must
be computed numerically as the exponential of a certain
4 4 matrix, in this paper, this matrix will be obtained in
closed form for the chiral case. Once the transition matrix is
determined, the SDGF is presented in a easy computational
form in terms of 2 2 matrices. It is interesting to mention
that the transition matrix determined in this paper can also
be used to compute the dispersive characteristics of planar
chiral layered waveguides following, for instance, the method
shown in [8].

Once a fast and accurate method has been developed for
computing the propagation constants of general layered chiral
lines, the propagation characteristics of a set of different basic
printed lines will be analyzed. In the first three numerical
examples presented in this paper, some basic lines [microstrip
lines, slot-line, and coplanar waveguide (CPW)] will be ana-
lyzed, assuming that the constitutive parameters of the chiral
substrate are constants over the frequency range of interest.
However, this approach would provide good results only if
the range of frequencies of interest is taken to be far from any
material resonance [1]. Thus, in order to complete this paper,
we have included as a final example the study of the dispersion
of the fundamental mode of a microstrip also considering a
dispersive behavior for the constitutive parameters of the chiral
substrate. As an approximate dispersive model for the chiral
substrate, we have used the model proposed in [30] for chiral
media made by embedding small conducting helices in a lossy
isotropic achiral host material.

II. A NALYSIS

In this section, the dispersion characteristics of planar chiral
transmission lines will be obtained solving the corresponding
integral equation for the surface-current densities/electric fields
on the conductors/slots using the Galerkin method in the
spectral domain after explicitly obtaining the SDGF.

A. Integral Equation

The cross section of the generic chiral line under study is
shown in Fig. 1. In order to make the analysis as general
as possible, the specific type of metallizations on the upper
interface of the layer and the boundary condition at the lower
interface will be specified later for each of the considered
lines. Assuming a field dependence of the type

and homogeneity along the-direction (see Fig. 1), the
transverse components of the electric field (namely, the
components perpendicular to the-axis) at the upper interface
of the layer can be expressed as a function of the surface-

current density by means of the spatial dyadic Green’s
function . For the strip-like case, enforcing
the transverse electric field to vanish on the strip conductors

, the usual integral equation for the surface-current
density is expressed as

(1)

In the analysis of slot-like lines, the integral equation is posed
in terms of the transverse electric field in the slots after
enforcing the surface current density to vanish at the slots

(2)

where operator is the inverse of
.

The above integral equations will be solved making use
of spectral-domain techniques, requiring then the computation
of the SDGF, —namely, the Fourier transform
in the -direction of the spatial dyadic Green’s function

. In Section II-B, the SDGF will be explicitly
obtained for the different boundary conditions which give
place to the lines studied in this paper.

B. SDGF

Using the Tellegen notation to describe the constitutive
relations in a chiral (biisotropic reciprocal) medium

(3)

the Maxwell’s curl equations for the-transformed fields in
the chiral layer can be written as

(4)

(5)

where and are, respectively, the permeability and per-
mittivity of the chiral layer, is the dimensionless chirality
parameter, the velocity of light in vacuum, and the curl
operator, which for the assumed field dependence reduces to

(6)

After some algebra, the following matrix differential equation
is obtained for the transverse electric and magnetic fields:

(7)

The expression of the 4 4 matrix can be obtained
from the general expression corresponding to the bianisotropic
case reported, for example, in [8] and [26]. However, it will
be shown later that in our problem it is not necessary to
obtain the specific expression of matrix for computing the
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SDGF. If (7) is now solved, the following relation between
the transformed transverse electromagnetic field at the upper
and lower interfaces of the layer is found:

(8)

where the transition matrix is given by
and the subscripts and refer to the upper and lower
interfaces of the layer, respectively.

A standard mathematical procedure to calculate the ex-
ponential of a matrix makes use of the eigenvectors and
eigenvalues of the following matrix:

(9)

where is the eigenvector matrix of and its eigen-
values. The key point of this analysis is that, for a chiral
layer, the eigenvectors and eigenvalues of thematrix can
be obtained directly in an easy way. Thus, it will be shown
that these eigenvectors are the left- and right-hand circular
polarized plane-waves solutions of the wave equation in an
unbounded homogeneous source-free chiral medium, namely
the Beltrami fields for the homogeneous unbounded source
free case [32].

If, for example, a right-hand circular polarized plane wave
is considered, its wavenumber is readily found to be

and its electric- and magnetic-intensity fields
[31]

(10)

(11)

with and ( ).
Now substituting these solutions into the matrix differential
equation (7), the following equation is reached:

(12)

According to the above equation, the transverse fields of
these plane waves are eigenvectors of the matrix and

its associated eigenvalues. Similarly, the
transverse fields of the left-hand circular polarized plane waves
with (where is the left-
hand wavenumber), will be the two remaining eigenvectors of
the matrix associated with the eigenvalues .

The right-hand eigenvectors can now be obtained taking into
account that must satisfy the following equation:

(13)

and considering the right-hand impedance relation (11). The
transverse electric fields of the left-hand eigenvalues can be
obtained by duality replacing by and then using the
left-hand impedance to determine the magnetic intensity

transverse fields. After some simple algebra to compute the
eigenvectors, the following results are obtained:

(14)

where

(15)

Finally, introducing both matrix and its inverse in (9), the
transition matrix can be written as

(16)

where the 2 2 matrix is given in (17), shown at
the bottom of the page, where and

. As expected, the matrix is found to be the
dual expression of the matrix obtained by just replacing

by . It is interesting to mention that the 2 2
submatrix ( ) of matrix in (16) is a dimensionless
matrix relating the Fourier transform of the transverse electric
(magnetic) field at the upper and lower interface of the chiral
layer. Out diagonal submatrix ( ) is the transverse
impedance (admittance) matrix relating the Fourier transform
of the transverse electric (magnetic) field at the upper interface
to the Fourier transform of the magnetic (electric) field at the
lower one.

Once the closed-form expression for the transition matrix
has been explicitly obtained, the SDGF is readily built for the
transmission lines considered in this paper. Next, two different
cases will be analyzed depending on the boundary condition
at the lower interface in Fig. 1:

• Ground Plane:In this case, the transverse electric field
must vanish at the lower interface. Expressing the surface
current density as a function of the discontinuity of the
transverse magnetic field, the SDGF is
given by

(18)

where matrix and is the free-space
admittance matrix for Fourier transform of the transverse
fields

(19)

(17)
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with and (the sign of has
to be chosen for the radiation condition to be fulfilled).

• Air Interface: Using the above free-space transverse ad-
mittance dyad, the following expression is found for the
SDGF:

(20)

The above two SDGF”s [(18), (20)] will now be used as the
spectral kernels in the Galerkin procedure.

C. Galerkin Method

Once the SDGF has been obtained, (1) or (2)
can now be solved in the spectral domain in the usual way
[33]. In this paper, the widely used Chebyshev polynomials
weighted by the Maxwell distribution will be employed as
basis functions to analyze both the strip- and slot-like cases.
Thus, in a strip-like structure, the current densities on theth
strip are expanded using the following set of functions:

(21)

(22)

where and are, respectively, the Chebyshev poly-
nomials of the first and second kind,
with being the abscissa of the center of the considered strip
and its width. Although the behavior of the current density
at the edge of an infinitely thin strip on a chiral substrate
differs from that in an isotropic case ( dependence
in the latter case) [34], the proposed basis functions have
been checked to provide sufficiently reliable results for the
commonly used values of the constitutive parameters. A test
of the suitability of the above basis function has been carried
out through the convergence of the computed results with
respect to the number of basis functions. For all the numerical
results presented, it has been found that the convergence is
appropriate, i.e., the relative error decreases monotonically as
the number of basis functions increases.

After the choice of appropriate basis functions, the standard
application of the Galerkin method in the spectral domain leads
to posing the dispersion relation of the considered structures in
terms of the zeros of the Galerkin determinant. The numerical
computation of the integrals appearing in the Galerkin matrix
has been sped up, making use of asymptotic techniques as
those proposed in [18].

III. N UMERICAL RESULTS

On the basis of the above theory, a Fortran code has been
developed to compute the dispersion characteristics of several
planar chiral transmission lines. The dispersion characteristics
presented in the first three examples have been obtained
assuming a constant frequency dependence on the constitutive
parameters over the considered range of frequencies. It should

Fig. 2. Dispersion curves of the fundamental mode of a single microstrip on
a chiral substrate for different values of the chiral admittance�c (in 10�3
�1)
of the substrate.�=k0 normalized phase constant. (——–):�BP = 4�0 in the
Boys–Post system. (– – –):� = 4�0 in the Tellegen system.(�): data from
[12]. � = �0 in all cases. Dimensions:w = h = 3 mm.

then be taken into account that this discussion on these exam-
ples is restricted to the application of the above assumption. In
a final example, the frequency dependence of the constitutive
parameters has been included in the analysis using the model
proposed in [30]. Thus, the results corresponding to this final
example can be seen as more realistic ones.

As a first example, a single microstrip on a chiral layer
is analyzed. This example has two objectives: to make clear
the importance of the full specification of the system of
constitutive parameters used to describe the chiral medium,
and to check this method and codes by comparing our re-
sults with those previously reported in [12] before showing
novel results for other lines. The dispersion relation of the
fundamental mode of a chiral microstrip is shown in Fig. 2
with two different sets of curves. The first set (solid lines)
has been computed in this paper using different values of the
chiral admittance , in the Boys–Post system of
constitutive parameters, and keeping both and
constant (subscript refers to Boys–Post system). The
Boys–Post relations in a biisotropic reciprocal medium are

(23)

This same system was used in [12] and the results of this
paper are reproduced in Fig. 2 (dots), showing an excellent
agreement with our data. The second set of curves (dotted
lines) has been calculated for different values of(although,
in Fig. 2, the corresponding values ofhave been retained for
comparison) and keepingconstant in the Tellegen system. It
can be observed that in the first set of curves, the normalized
phase constant always increases as the chirality parameter
gets higher. The behavior of the second set of curves shows
two different zones: low-frequencies zone (in this range of
frequencies, the greater the chirality parameter the lesser the
phase constant) and high-frequencies zone (in this example,
higher than approximately 12 GHz, and the increase of the
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Fig. 3. Dispersion characteristics of the two fundamental modes of a coupled
microstrip line on a chiral substrate for several values of the chirality parameter
of the substrate.� = 4�0, � = �0. Dimensions:w = h = 3 mm and
s = 1:5 mm.

chirality parameter makes the phase constant grow). It should
be noted that the highly dispersive nature of the fundamental
mode for high values of the chirality parameter ( ) can
transform the nature of the fundamental mode from purely
propagative to leaky (as is less than the normalized
wavenumber of the chiral dielectric slab). This phenomenon
would occur for frequencies below 7 GHz for and will
not be analyzed here since its study is beyond the scope of this
paper. It is also interesting to point out that the point at which
the chiral curves intersect the nonchiral one is approximately
the same. From now on, the Tellegen system of constitutive
parameters (3) will be used in the following examples.

As a second example, the dispersion characteristics of the
two fundamental modes of a symmetric coupled microstrip
line will be studied (see structure in Fig. 3). Specifically, the
dependence of the dispersion curves for different values of
the chirality parameter is analyzed in Fig. 3. Mode 1 (solid
line) refers to the mode that is even for and mode 2
(dashed line) to the odd mode for . As can be seen in
Fig. 3, and similar to the first example, there exist two different
ranges of frequencies in the dispersive behavior of both modes.
Thus, for low frequencies (less than 10 GHz for mode 1 and
less than 12 GHz for mode 2, approximately), the normalized
phase constants of both modes decreases as the chirality of the
substrate increases. On the contrary, for higher frequencies, the
increase of the chirality parameter gives rise to an increase of
the phase constants. It can also be observed that two features of
Fig. 3 show that the chirality makes the line more dispersive:
the difference between the phase constants of modes 1 and 2
(equivalently, between their phase velocities) gets higher as
the chirality of the substrate increases, and the slope of the
chiral curves always grows as the chirality increases.

After this study, and to complete this example, the current
densities on the strips will be studied for both the nonchiral
and chiral cases. As is well known, the symmetry shown
by the even mode in a symmetric coupled microstrip on an
isotropic (nonchiral) substrate can be related to the existence

(a)

(b)

Fig. 4. Normalized surface current densities on the strip conductors cor-
responding to mode 1 in Fig. 3 at 5 GHz. (a) Surface-current densities in
z-direction. (b) Surface-current densities inx-direction. (——–): Real part,
(– – –): imaginary part.

of a vertical magnetic wall between the strips (or equivalently,
the fields in the left-hand side of the wall are the mirror image
of the fields in the right-hand side). The above feature is
possible since the constitutive parameters are scalar; namely,
they are reflected without changing its sign in a mirror. This
means that if Maxwell’s curl equations are supposed to be
fulfilled in one side of the mirror, then the image fields also
fulfill Maxwell’s equation without changing the sign in the
constitutive parameters. On the contrary, if the substrate is a
chiral material, the pseudoscalar nature of(which relates
polar vectors to axial vectors) requires to change the sign of
for the mirror image fields to verify Maxwell’s curls equations.
Clearly, the above situation is impossible if the substrate is
homogenous since would have the same sign in both sides
of the magnetic wall and consequently even modes could not
exist in a chiral line. A similar rationale can also be applied
to justify the nonexistence of odd modes in chiral lines. The
above lack of symmetry is shown in Fig. 4(a) and (b), where
the current densities on the strips for the even mode in the
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Fig. 5. Dispersion characteristics of the fundamental mode of a chiral slot
line for several values of the chirality parameter of the substrate.� = 4�0,
� = �0. Dimensions:w = 1 mm, h = 3 mm.

Fig. 6. Dispersion characteristics of the fundamental mode of a chiral CPW
for several values of the chirality parameter of the substrate.� = 7:35�0,
� = �0. Dimensions:s = 0:25 mm, w = h = 1 mm.

nonchiral case have been plotted together with the current
densities corresponding to the chiral case. Fig. 4(a) shows the
break of symmetry for the real part of when
and the appearance of an additional nonsymmetric imaginary
part. A similar break of symmetry can also be observed for
the imaginary part of in Fig. 4(b) together with the
appearance of a nonsymmetric real part. In both Fig. 4(a) and
(b), the current densities have been normalized, taking the
coefficient of the basis function as one.

As a third example, the dispersion curves of the fundamental
mode of a slotline and a CPW have been plotted in Figs. 5
and 6, respectively. Similarly to the previously analyzed
microstrip-like lines, there also exist two different frequency
zones in the dispersion curves of these lines: low and high
frequencies zones with the above qualitative behavior of the
normalized phase constant with respect to the chirality. It
can also be observed in Figs. 5 and 6 that the transition
frequency between the low- and high-frequency zones, (i.e.,

Fig. 7. Dispersive behavior of the chiral parameter following the model
proposed in [30] for a chiral material made by embedding helices in a
lossy chiral host medium. Host medium:�r = 2:95 � j0:07, � = �0.
Helices: three-turn helices of cooper-coated wire of 0.1524-mm diameter and
surface resistanceRs = 2:52� 107

p
f , radius of the 0.625-mm helices and

0.667-mm-pitch.

the frequency at which a chiral dispersion curve intersects
the nonchiral dispersion curve) is weakly dependent on the
chirality of the substrate. The effect of the chirality on the
dispersion behavior is again to make the line more dispersive.
This feature can significantly restrict the wide-range frequency
applicability of the nonchiral CPW line (see Fig. 6) and could
also make the fundamental mode of the slotline become leaky
at low frequencies (as happens for in this example).

As a final example, consider the dispersion of the funda-
mental mode of a microstrip on a dispersive chiral substrate.
As is well known, chiral material is always dispersive in
practice, with the constitutive parameters showing a strong
dependence of the frequency near resonances. In this example,
the chiral substrate of the microstrip is an artificial medium
made by embedding small conducting helices in a lossy
isotropic achiral host material. The dispersive behavior of the
effective parameters of this medium are obtained following
the model proposed in [30]. This model is a one-resonance
model, which includes helix resonance and radiation, near-
fields dielectric losses, and coupling effects between helices.
Previous to analyzing the microstrip line, the dispersive behav-
ior of the chiral parameter is shown in Fig. 7 for certain
characteristics of the helicoidal inclusions and host material.
As can be seen, the chiral parameter shows the resonance
in this range of frequencies (approximately at 6.9 GHz).
Above and below the resonance zone, the chiral parameter
shows low losses (imaginary part is almost negligible) and
low dispersion (smooth slope in the curves). The dispersion
curves for the remaining constitutive parameter (effective
permeability and permittivity) of this artificial chiral material
also shows a resonance at the same frequency asand are
reported in [30] in a range from 5 to 10 GHz. Finally, in Fig. 8,
the dispersion curve of the microstrip line on this artificial
substrate is plotted. As shown in this figure, the behavior of the
normalized phase and attenuation constants exhibit a typical
anomalous dispersion in the resonance zone qualitatively equal
to that corresponding to the constitutive parameters. This same
qualitative behavior is expected to be found in the dispersion
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Fig. 8. Normalized phase and attenuation constants corresponding to the
fundamental mode of a single microstrip line on the dispersive chiral substrate
referred to in Fig. 7. Dimensions:w = 3 mm, h = 10 mm.

relations of other lines when the frequency dependence of the
chiral parameters is taken into account. Due to the presence
of high losses at the resonance region, this feature might be
advantageously used for the design of reject-band filters.

IV. CONCLUDING REMARKS

This paper presents a systematic method to obtain the
dispersion characteristics of planar chiral transmission lines.
The method employed here can readily take into account
any dispersive behavior of the chiral substrate with respect
to the frequency and, thus, the application of the method can
provide a general view of the main features of the effect of the
chirality on the dispersion curves of the fundamental modes
in planar chiral transmission lines. This study is relevant in
the discussion of possible further technological applications
of this type of lines.

The numerical implementation of the method has been
carried out by solving the corresponding integral equation
using the Galerkin method in the spectral domain. Direct
expressions of the SDGF for different boundary conditions
have been presented in terms of a closed-form expression of
the 4 4 transition matrix of the chiral substrate. The closed-
form expression of the transition matrix has been obtained
making use of the existence of left- and right-hand circular
polarized plane waves propagating in the chiral medium. The
use of this closed-form expression has avoided the numerical
matrix exponentiations usually performed to compute this ma-
trix, considerably reducing the central processing unit (CPU)
time on a computer.

The analyzed examples (single and coupled microstrip lines,
slot line, and CPW, assuming the constitutive parameters of
the chiral lines as constant in the frequency range) show the
existence of a similar dispersive behavior of the fundamental
modes in the considered range of the chirality. Specifically,
there appear two zones of frequencies in the dispersion curves:
low-frequencies range (the greater the chirality the lesser the
phase constant), and high-frequencies range (the increase of
makes the phase constant decrease.) It is interesting to point
out that chirality increases the dispersive character of the lines
and may even give place to the appearance of low-frequency

leakage for the fundamental mode. When the constitutive
parameters of the chiral substrate are considered frequency
dependent, the resonant-like behavior of the propagation con-
stants of the line has also been shown.
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