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Study of the Dispersion Characteristics
of Planar Chiral Lines

Gonzalo Plaza, Francisco Medember, IEEE and Manuel HornoMember, IEEE

Abstract—This paper analyzes the dispersion characteristics of crowave waveguides and transmission lines real technological
the fundamental modes of some basic chiral planar transmission devices in the very near future.

lines: microstrip, slot-line, coplanar waveguide (CPW), and a  yhq effect of bi-iso/anisotropic media on the guided elec-

coupled microstrip line, including the possible frequency depen- . . d h I d th
dence of the chiral parameters. The dispersion characteristics are ‘0magnetic propagation and antenna has also aroused the

computed after finding the zeros of the determinantal equation interest of many researchers. Thus, a great deal of work
resulting from the application of the Galerkin method in the spec-  on the electromagnetic propagation in waveguides filled with
tral domain. Because of the biisotropic nature of the substrate, pjjsotropic/chiral materials has been reported in the literature

a 4 x 4 matrix differential equation has been solved to obtain . . .
the spectral dyadic Green’s function (SDGF). This function will (e.g., [3]H8], just to mention a few). The use of chiral

be explicitly obtained in terms of a closed-form 4x 4 transion ~Media in microstrip antennas has also been considered in
matrix that relates the transverse electromagnetic fields at the [9]-[11]; specifically, the possibility of reducing the losses

upper and lower interface of the chiral substrate. This fact is due to surface-waves radiation in a microstrip antenna using
key to developing fast computer codes since it avoids numerical a chiral substrate have been proposed in [9], although this

matrix exponentiations. The numerical results have shown that ic has b di d in 10l P h h -
the chiral nature of the substrate basically adds an additional pa- (OPIC has been discussed in [10]. Propagation characteristics

rameter to control the propagation characteristics of the analyzed Of bi—iso/anisotropic transmission lines has also given rise
lines and, in general, makes the lines more dispersive, showingto some interesting works. The dispersion characteristics of

even resonant-like behavior. the fundamental mode of a microstrip on a chiral substrate
Index Terms—Chiral media, Galerkin method, planar trans- are obtained in [12] and [13] and on a layered gyromag-
mission lines, spectral domain. netic and chiral substrate in [14]. In [15] and [16], the

authors develop a quasi-TEM analysis of an inhomogeneous
bi—iso/anisotropic multiconductor transmission line, extending
the well-known telegrapher’s equations to these media. More

N RECENT years, the possibility of manufacturing biyeceny transmission-line models are proposed for hybrid

|§Qtrop|c r_emprocal m(ejlten.lal.ls (ggn(?rally knqwnhas Ch."?ﬁodes in bianisotropic structures in [17].
media) at microwave and millimetric frequencies has raise Similar to other types of planar lines, and provided that

E great Lhecl)retlcal ar:d technt:) Iogmzl |EteresL. Qj IS Vr\:etﬁf substrates have the proper symmetry, the dispersion char-

n’?ig\r,(\;rs]:[rﬁc!cf:egoirr?golf)lvve\lqo:ndie?egﬁc iosﬁ r?]rg dii mmlg (E”:El teristics of general bianisotropic layered and multiconductor
- . . . . [1]. .Fhansmission lines can be studied using techniques based on the

specific electromagnetic properties of chiral materials, which_ - i . . ;

; I L . . well-known spectral-domain analysis (SDA). In this paper, the

imply an additional cross coupling in the constitutive relations

promisingly extend the possibilities of the isotropic media foqeneral pro_cedur_e shown in [1.8] IS how applied and adapted to
designing microwave devices [1]. Thus, numerous appIicatioStUdy the dispersion characteristics of the fundamental modes

n . ) .
. . L - OF several planar lines with chiral substrates. It should be
have been proposed using chiral media, including: . . : . .
1 reflecti o pointed out that this paper is specifically focused on chiral
2) ﬁntlhre ?IC“?” coatl?gs, ) media, i.e., those reciprocal biisotropic media whose existence
3) I? t—_re ec I'On C?.a mgs,_ ] is out of controversy—nonreciprocal biisotropic media have
) rotating polarization devices, neither been found nor manufactured, and the possibility
4) low reflection antenna radomes; etc.

e i ) _ of their existence is currently under discussion in the open
Recently, a new class of artificial chiral materials suitable f@tarature [19], [20].

microwave waveguides in planar technology was proposed ingefore applying the Galerkin method in the spectral domain,

[2]. These new media are based on the inclusion of smglly shectral dyadic Green's function (SDGF) of the structure
magnetostatic-wave resonators with a surface metalllzatloans to be obtained. The SDGF for a grounded chiral slab has
a host medium and are expected to make chiral planar ke getermined in previous work using circularly polarized

potential functions [10], [12]. In this paper, the SDGF will
Manuscript received July 28, 1997; revised January 30, 1998. This WJ?@ co_mpu_ted n a different Yvay by SO'V'”Q the Ma>.<well
was supported by the DGICYT, Spain, under Project TIC95-0447. equations in the chiral layer using the<44 matrix differential
The authors are with the Microwave Group, Department of Electronics aggheme introduced in [21], which is often applied in different
Electromagnetisim, Facultad désfea, Universidad de Sevilla, 41012 Seville, . . . .
Spain. contexts in the literature [22]-[29]. Following this scheme,
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by current densityJ; by means of the spatial dyadic Green’s
.. _— function G(z — &', k., w). For the strip-like case, enforcing
E,JLK | Ik the transverse electric field to vanish on the strip conductors
[/ A | el X E.(x) = 0, the usual integral equation for the surface-current
Air inberface ar Ground plane density is expressed as

Fig. 1. Generic planar chiral transmission line.

B() = [ G- b w) 3 =0, ()

of the transverse electromagnetic fields at the upper amdthe analysis of slot-like lines, the integral equation is posed
lower interfaces of the layer will be determined. Althougin terms of the transverse electric field in the slots after

the transition matrix of a general bianisotropic layer muginforcing the surface current density to vanish at the slots
be computed numerically as the exponential of a certain oo

4 x 4 matrix, in this paper, this matrix will be obtained in Ji(x) :/ L(z—a' k., w) Ey(z)dz’ =0 2)
closed form for the chiral case. Once the transition matrix is —o0

determlned, the SDGF is presentgd in a easy CompUt"’,‘t'o{%lere Z(z — o/, k., w) operator is the inverse ofi(x —
form in terms of 2x 2 matrices. It is interesting to mentlonx, k., w)

e . H H : ) vz .

that the transition matrix determined in this paper can aISOThe above integral equations will be solved making use

be_ used to compute _the dlsper_swe chgracterlsncs of plara rspectral—domain techniques, requiring then the computation
chiral layered waveguides following, for instance, the methqg the SDGF,G(k., k., w)—namely, the Fourier transform

shown in [8]. in the z-direction of the spatial dyadic Green’s function
Once a fast and accurate method has been developedggr_x, k., w). In Section II-B, the SDGF will be explicitly

computing the propagation constants of general layered Chi&%[:ained for the different boundary conditions which give
lines, the propagation characteristics of a set of different ba;iiféce to the lines studied in this paper

printed lines will be analyzed. In the first three numeric
examples presented in this paper, some basic lines [microsEipSDGF
lines, slot-line, and coplanar waveguide (CPW)] will be ana-" ™ _ . o
lyzed, assuming that the constitutive parameters of the chiralUsing the Tellegen notation to describe the constitutive
substrate are constants over the frequency range of interégfgtions in a chiral (biisotropic reciprocal) medium
However, this approach would provide good results only if .

. X . D=¢E— jk/cH
the range of frequencies of interest is taken to be far from any ;
material resonance [1]. Thus, in order to complete this paper, B =pH+j/cE ®3)
wfetrr:avfe n dcludedtals afl(r;al efxamplle th(te ;tucily of the (_jclisp_ers&?]ré Maxwell’s curl equations for the-transformed fields in
of the fundamental mode of a microstrip also consi ermg'tﬁF chiral layer can be written as
dispersive behavior for the constitutive parameters of the chira

substrate. As an approximate dispersive model for the chiral [R]-E = — jw (uﬁ +jf]§;> (4)

substrate, we have used the model proposed in [30] for chiral ) A . ¢

media made by embedding small conducting helices in a lossy [R]-H =jw (eE — j—H) (5)
C

isotropic achiral host material.

where 1 and ¢ are, respectively, the permeability and per-
mittivity of the chiral layer,« is the dimensionless chirality
parameter¢ the velocity of light in vacuum, anfiR] the curl

In this section, the dispersion characteristics of planar Chif@berator, which for the assumed field dependence reduces to
transmission lines will be obtained solving the corresponding

Il. ANALYSIS

integral equation for the surface-current densities/electric fields 0 gk g
on the conductors/slots using the Galerkin method in the . a”
spectral domain after explicitly obtaining the SDGF. [R]=|—jk: 0  Jjkao|. (6)
3]
, ——  —jk, O
A. Integral Equation dy

The cross section of the generic chiral line under study ffter some algebra, the following matrix differential equation
shown in Fig. 1. In order to make the analysis as genefglobtained for the transverse electric and magnetic fields:
as possible, the specific type of metallizations on the upper d B, E,
interface of the layer and the boundary condition at the lower oy {HJ =[Q]- [HJ (7)
interface will be specified later for each of the considered ' '
lines. Assuming a field dependence of the tyge(—jk.2 + The expression of the 4« 4 [Q] matrix can be obtained
jwt) and homogeneity along the-direction (see Fig. 1), the from the general expression corresponding to the bianisotropic
transverse components of the electric fidlg (namely, the case reported, for example, in [8] and [26]. However, it will

components perpendicular to theaxis) at the upper interfacebe shown later that in our problem it is not necessary to
of the layer can be expressed as a function of the surfacdtain the specific expression of matff] for computing the
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SDGF. If (7) is now solved, the following relation betweeriransverse fields. After some simple algebra to compute the
the transformed transverse electromagnetic field at the uppégenvectors, the following results are obtained:

and lower interfaces of the layer is found: 1 1 1 1
Bﬂ =[P]- [;ﬂ ©) I'(kr) I'(—Fkr) P(=kr)  D'(kr)
e f A= | =L -1 L L
where the transition matrigP] is given by [P] = exp([Q]h) Jn Jn Jn Jn
and the subscripts: and [ refer to the upper and lower -1 -1 1 1
interfaces of the layer, respectively. in F(kr) n P(=Fkr) jnl“( ki) jnr(kL)
A standard mathematical procedure to calculate the ex- (24)

ponential of a matrix makes use of the eigenvectors anc;]
) ; o where
eigenvalues of the following matrix:

k2 — k2
[P] = exp([Q]h) = [A] - [diag{exp(\:h)}] - [A]F (9) I'(ka)

ka2 — k2 — ok,

(15)

where[A] is the eigenvector matrix diQ] and A; its eigen-
values. The key point of this analysis is that, for a chirq}
layer, the eigenvectors and eigenvalues of [(R¢ matrix can

inally, introducing both matrixA] and its inverse in (9), the
ansition matrix can be written as

be obtained directly in an easy way. Thus, it will be shown [K]r + K]z —JnKlr + jnlK]z
that these eigenvectors are the left- and right-hand circulaFPlaxe) = _—1[K] + i[K] K]z + K]
polarized plane-waves solutions of the wave equation in an Jn " in L # g
unbounded homogeneous source-free chiral medium, namely (16)

the Beltrami fields for the homogeneous unbounded SOUIE® 1e the 2x 2
free case [32].

If, for example, a right-hand circular polarized plane wa
is considered, its wavenumber is readily found toipe =
w(y/me + k/c) and its electric- and magnetic-intensity field

[K]r matrix is given in (17), shown at
the bottom of the page, wherg}, = k7 — k% and 47 =
VE2 — k2. As expected, thdK], matrix is found to be the
dual expression of thEK]r matrix obtained by just replacing
SkR by —kr. It is interesting to mention that the 2 2

[31] submatrix[P];1([P]22) of matrix [P] in (16) is a dimensionless
Egr(r) =Egexp[—j(kyz + kyy + k.2)] (10) matrix relating the Fourier transform of the transverse electric
-1 (magnetic) field at the upper and lower interface of the chiral

Hp(r) = i Eg(r) (11) layer. Out diagonal submatri®];> ([P]i2) is the transverse

_ impedance (admittance) matrix relating the Fourier transform
with 17 = (p/e)"/? and k, = £\/k% — k7 (k7 = k3 + k2). of the transverse electric (magnetic) field at the upper interface
Now substituting these solutions into the matrix differentiab the Fourier transform of the magnetic (electric) field at the

equation (7), the following equation is reached: lower one.
£ - Once the closed-form expression for the transition matrix
| Ere | _ Eg ; S ; . . X
—Jky Hp,|= Q] Hp, | (12) has been explicitly obtained, the SDGF is readily built for the

_ . _ transmission lines considered in this paper. Next, two different
According to the above equation, the transverse fields @dses will be analyzed depending on the boundary condition
these plane waves are eigenvectors of ¢ matrix and at the lower interface in Fig. 1:

—jky = iv_kf — ki its associated eigenvalues. Similarly, the . Ground Plane:In this case, the transverse electric field
transverse fields of the left-hand circular polarized plane waves  myst vanish at the lower interface. Expressing the surface

with k, = ++/k7 — ki (wherek;, = w(\/ne—k/c) is the left- current density as a function of the discontinuity of the
hand wavenumber), will be the two remaining eigenvectors of  yransyerse magnetic field, the SDQR(k,, k., w) is
the [Q] matrix associated with the eigenvalueék? — k2)%/2, given by
The right-hand eigenvectors can now be obtained taking into
account thatEz(r) must satisfy the following equation: G(ke, k2, w) = —{[Y] = [Pla2- P12} " - [T]  (18)
V x Eg = krEg (13) where matrix[T] = [_{ ] and [Y] is the free-space

o _ _ ) admittance matrix for Fourier transform of the transverse
and considering the right-hand impedance relation (11). The fig|ds

transverse electric fields of the left-hand eigenvalues can be

. 1. 2 1.2
obtained by duality replacingr by —%r and then using the Y] = _1 [ j’”kz , ko kw} (19)
left-hand impedancer to determine the magnetic intensity whokyo k2 — K —k.k,
K]y = cosh(yrh) « krvr — kik. tanh(ygh) —(k% — k2) tanh(yrh) } 17)
B okpr (k2 — k2) tanh(vrh)  krye + kok. tanh(yzh)
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with ko = w\/noeo andk?, = k3 —k? (the sign ofk,o has "
to be chosen for the radiation condition to be fulfilled). ~ - W, #_..r'”
* Air Interface: Using the above free-space transverse ad- TS Jh o
mittance dyad, the following expression is found for the 2.
SDGF: a b e
- :.:—3
G(ks, k2, w) = = {[Y] = ([Pl2r — [P22 - [Y]) &£ T 4 e
S([Plus = [Pliz - [YD ™14 [T, = S g
(20) 2 R T 'r-"":__ .
e
The above two SDGF”s [(18), (20)] will now be used as the fomT T P
spectral kernels in the Galerkin procedure. o :' 3 e
e T e
C. Galerkin Method 2 = w5
Once the SDGRG(k,, k., w) has been obtained, (1) or (2) Fraq (GHz)

can now be solved in the spectral domain in the usual way 5 Di _ the fund al mode of a sindle microsti

. . . . 2. Ispersion curves o e fundamental mode or a single microstrip on
[33_]' In this paper, the Wlde_ly !Jsefj Che.bySheV p0|yn0m|agéghiral substrate for different values of the chiral admittafacgn 10321~ 1)
weighted by the Maxwell distribution will be employed asfthe substrate3/k, normalized phase constant. (—ejip = 4o in the
basis functions to analyze both the strip- and slot-like cas@i%yS—PSSt SV_Steflfll- - *)5,: 4ep in the_Ti"e_g?sn systents): data from
Thus, in a strip-like structure, the current densities onithe 12 # = #o in all cases. Dimensionsy = h =3 mm.

strip are expanded using the following set of functions: ) o ]
then be taken into account that this discussion on these exam-

i 4 U,(a) ples is restricted to the application of the above assumption. In
J’L‘ ’I’I(:L’) = . . .

' Tw; n+1 a final example, the frequency dependence of the constitutive

4 2 To(ay) parameters has been included in the analysis using the model
L) = — ———5 (22) i i o6

; w; m proposed in [30]. Thus, the results corresponding to this final

example can be seen as more realistic ones.

whereT,,(-) andU,(-) are, respectively, the Chebyshev poly- As a first example, a single microstrip on a chiral layer
nomials of the first and second kind; = (x — z;)/(w;/2) is analyzed. This example has two objectives: to make clear
with z; being the abscissa of the center of the considered sttife importance of the full specification of the system of
anduw; its width. Although the behavior of the current densitgonstitutive parameters used to describe the chiral medium,
at the edge of an infinitely thin strip on a chiral substratend to check this method and codes by comparing our re-
differs from that in an isotropic caseR('/? dependence sults with those previously reported in [12] before showing
in the latter case) [34], the proposed basis functions hamevel results for other lines. The dispersion relation of the
been checked to provide sufficiently reliable results for tfegndamental mode of a chiral microstrip is shown in Fig. 2
commonly used values of the constitutive parameters. A tagith two different sets of curves. The first set (solid lines)
of the suitability of the above basis function has been carriéés been computed in this paper using different values of the
out through the convergence of the computed results withiral admittance. = «/(cu), in the Boys—Post system of
respect to the number of basis functions. For all the numerigainstitutive parameters, and keeping beglp and upp =
results presented, it has been found that the convergencedsstant (subscripBP refers to Boys—Post system). The
appropriate, i.e., the relative error decreases monotonicallyBgys—Post relations in a biisotropic reciprocal medium are

1—o? (21)

T

the number of basis functions increases. _ i
. : : : D =eppE — j¢.B
After the choice of appropriate basis functions, the standard 1
application of the Galerkin method in the spectral domain leads H=—-B-j{E. (23)

to posing the dispersion relation of the considered structures in HBD

terms of the zeros of the Galerkin determinant. The numericdpiS same system was used in [12] and the results of this
computation of the integrals appearing in the Galerkin matrB@pPer are reproduced in Fig. 2 (dots), showing an excellent

has been sped up, making use of asymptotic techniques@geeément with our data. The second set of curves (dotted
those proposed in [18]. lines) has been calculated for different values:dfalthough,

in Fig. 2, the corresponding values@fhave been retained for
comparison) and keepingconstant in the Tellegen system. It
can be observed that in the first set of curves, the normalized
On the basis of the above theory, a Fortran code has bgdrase constant always increases as the chirality parameter
developed to compute the dispersion characteristics of sevayals higher. The behavior of the second set of curves shows
planar chiral transmission lines. The dispersion characteristteso different zones: low-frequencies zone (in this range of
presented in the first three examples have been obtairiegjuencies, the greater the chirality parameter the lesser the
assuming a constant frequency dependence on the constitutilase constant) and high-frequencies zone (in this example,
parameters over the considered range of frequencies. It shauilgher than approximately 12 GHz, and the increase of the

I1l. NUMERICAL RESULTS
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Fig. 3. Dispersion characteristics of the two fundamental modes of a coupled (a)
microstrip line on a chiral substrate for several values of the chirality parameter
of the substratee = 4¢p, ¢ = po. Dimensions:w = h = 3 mm and 0.005 — - - . r . ;

s = 1.5 mm.

0.000 -

chirality parameter makes the phase constant grow). It should
be noted that the highly dispersive nature of the fundamental i
mode for high values of the chirality parametér & 5) can -0.005 |-
transform the nature of the fundamental mode from purely
propagative to leaky (ag/ko is less than the normalized
wavenumber of the chiral dielectric slab). This phenomenon
would occur for frequencies below 7 GHz fér = 5 and will
not be analyzed here since its study is beyond the scope of this 0015
paper. It is also interesting to point out that the point at which I
the chiral curves intersect the nonchiral one is approximately I
the same. From now on, the Tellegen system of constitutive -0.020
parameters (3) will be used in the following examples. X (mm)
As a second example, the dispersion characteristics of the )
two fundamental modes of a symmetric coupled microstrip
line will be studied (see structure in Fig. 3). Specifically, thE!d: 4. Normalized surface current densities on the strip conductors cor-
. . . responding to mode 1 in Fig. 3 at 5 GHz. (a) Surface-current densities in
dependence of the dispersion curves for different values Ofjirection. (b) Surface-current densities drdirection. (
the chirality parameter is analyzed in Fig. 3. Mode 1 (soli@t — -): imaginary part.
line) refers to the mode that is even fer= 0 and mode 2

(dashed line) to the odd mode fer= 0. As can be seen in ot 5 yertical magnetic wall between the strips (or equivalently,
Fig. 3, and similar to the first example, there exist two differefe fields in the left-hand side of the wall are the mirror image
ranges of frequencies in the dispersive behavior of both modgg.the fields in the right-hand side). The above feature is
Thus, for low frequencies (less than 10 GHz for mode 1 anfssible since the constitutive parameters are scalar; namely,
less than 12 GHz for mode 2, approximately), the normalizggey are reflected without changing its sign in a mirror. This
phase constants of both modes decreases as the chirality ofifeg&ns that if Maxwell's curl equations are supposed to be
substrate increases. On the contrary, for higher frequencies, fif}fllled in one side of the mirror, then the image fields also
increase of the chirality parameter gives rise to an increasefgfiill Maxwell's equation without changing the sign in the
the phase constants. It can also be observed that two featureggpfstitutive parameters. On the contrary, if the substrate is a
Fig. 3 show that the chirality makes the line more dispersivehiral material, the pseudoscalar nature so{which relates
the difference between the phase constants of modes 1 ansbRr vectors to axial vectors) requires to change the sign of
(equivalently, between their phase velocities) gets higher @8 the mirror image fields to verify Maxwell’s curls equations.
the chirality of the substrate increases, and the slope of W&arly, the above situation is impossible if the substrate is
chiral curves always grows as the chirality increases. homogenous since would have the same sign in both sides
After this study, and to complete this example, the curreof the magnetic wall and consequently even modes could not
densities on the strips will be studied for both the nonchirakist in a chiral line. A similar rationale can also be applied
and chiral cases. As is well known, the symmetry showm justify the nonexistence of odd modes in chiral lines. The
by the even mode in a symmetric coupled microstrip on above lack of symmetry is shown in Fig. 4(a) and (b), where
isotropic (nonchiral) substrate can be related to the existertbe current densities on the strips for the even mode in the

Ix(x)

-0.010 -

): Real part,
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Chirality parameter

0.3 i H i i
3 4 5 6 7 8 9 10 11 12
Freq (GHz)
1 i - i P
i 4 1 1 14 1 Fig. 7. Dispersive behavior of the chiral parameter following the model

proposed in [30] for a chiral material made by embedding helices in a
lossy chiral host medium. Host mediura; = 2.95 — j0.07, p = po.

Fig. 5. Dispersion characteristics of the fundamental mode of a chiral sfdglices: three-tum he||ces()of cooTperTcoat_ed wire of 0.1524-mm diameter and
line for several values of the chirality parameter of the substrate. 4¢,, SUrface resistancls = 2.52 x 107 /f, radius of the 0.625-mm helices and

4 = po. Dimensionsa = 1 mm, A = 3 mm. 0.667-mm-pitch.

Fraq (GHz)

ey : ] the frequency at which a chiral dispersion curve intersects
W@ the nonchiral dispersion curve) is weakly dependent on the
T iy chirality of the substrate. The effect of the chirality on the
dispersion behavior is again to make the line more dispersive.
This feature can significantly restrict the wide-range frequency
applicability of the nonchiral CPW line (see Fig. 6) and could
—— P also make the fundamental mode of the slotline become leaky
| =08 — -l at low frequencies (as happens foe= 1.8 in this example).
r As a final example, consider the dispersion of the funda-
e =15 - mental mode of a microstrip on a dispersive chiral substrate.
As is well known, chiral material is always dispersive in
g practice, with the constitutive parameters showing a strong
" dependence of the frequency near resonances. In this example,
s the chiral substrate of the microstrip is an artificial medium
: made by embedding small conducting helices in a lossy
isotropic achiral host material. The dispersive behavior of the
Fig. 6. Dispersion characteristics of the fundamental mode ofaﬁchiral CP¥ffective parameters of this medium are obtained following
I?rzsi‘frgli%'zlrl]’;znzfzs”f (ig'gar'm’pzrimgtz of the substiate. 7.33¢0,  the model proposed in [30]. This model is a one-resonance
model, which includes helix resonance and radiation, near-
fields dielectric losses, and coupling effects between helices.
nonchiral case have been plotted together with the curresyevious to analyzing the microstrip line, the dispersive behav-
densities corresponding to the chiral case. Fig. 4(a) shows {Beof the chiral parametet(w) is shown in Fig. 7 for certain
break of symmetry for the real part ot (z) whenr = 0.5  characteristics of the helicoidal inclusions and host material.
and the appearance of an additional nonsymmetric imaging¥ can be seen, the chiral parameter shows the resonance
part. A similar break of symmetry can also be observed f@i this range of frequencies (approximately at 6.9 GHz).
the imaginary part of/,(z) in Fig. 4(b) together with the Above and below the resonance zone, the chiral parameter
appearance of a nonsymmetric real part. In both Fig. 4(a) agifows low losses (imaginary part is almost negligible) and
(b), the current densities have been normalized, taking thgv dispersion (smooth slope in the curves). The dispersion
coefficient of the basis functiod’ ,(x) as one. curves for the remaining constitutive parameter (effective
As a third example, the dispersion curves of the fundamenfgdrmeability and permittivity) of this artificial chiral material
mode of a slotline and a CPW have been plotted in Figs.aflso shows a resonance at the same frequency asd are
and 6, respectively. Similarly to the previously analyzetkported in [30]in a range from 5 to 10 GHz. Finally, in Fig. 8,
microstrip-like lines, there also exist two different frequencshe dispersion curve of the microstrip line on this artificial
zones in the dispersion curves of these lines: low and highbstrate is plotted. As shown in this figure, the behavior of the
frequencies zones with the above qualitative behavior of thermalized phase and attenuation constants exhibit a typical
normalized phase constant with respect to the chirality. dnomalous dispersion in the resonance zone qualitatively equal
can also be observed in Figs. 5 and 6 that the transitiomthat corresponding to the constitutive parameters. This same
frequency between the low- and high-frequency zones, (i.gualitative behavior is expected to be found in the dispersion

R kg

Frag (GHE)
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leakage for the fundamental mode. When the constitutive
parameters of the chiral substrate are considered frequency
dependent, the resonant-like behavior of the propagation con-
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Fig. 8. Normalized phase and attenuation constants corresponding to t
fundamental mode of a single microstrip line on the dispersive chiral substrate
referred to in Fig. 7. Dimensiongv = 3 mm, 2~ = 10 mm.

(6]

relations of other lines when the frequency dependence of the
chiral parameters is taken into account. Due to the presen y
of high losses at the resonance region, this feature might be
advantageously used for the design of reject-band filters.  [8l

IV. CONCLUDING REMARKS [

This paper presents a systematic method to obtain ti€]
dispersion characteristics of planar chiral transmission Iimﬁl]
The method employed here can readily take into account
any dispersive behavior of the chiral substrate with respect
to the frequency and, thus, the application of the method ¢
provide a general view of the main features of the effect of the
chirality on the dispersion curves of the fundamental modés!
in planar chiral transmission lines. This study is relevant in
the discussion of possible further technological applicatiorist]
of this type of lines.

The numerical implementation of the method has been
carried out by solving the corresponding integral equatidfs]
using the Galerkin method in the spectral domain. Direct
expressions of the SDGF for different boundary conditions
have been presented in terms of a closed-form expression of
the 4 x 4 transition matrix of the chiral substrate. The closed?*®!
form expression of the transition matrix has been obtained
making use of the existence of left- and right-hand circular
polarized plane waves propagating in the chiral medium. Th
use of this closed-form expression has avoided the numerical
matrix exponentiations usually performed to compute this m&#$l
trix, considerably reducing the central processing unit (CPU)
time on a computer.

The analyzed examples (single and coupled microstrip linds?)
slot line, and CPW, assuming the constitutive parameters of
the chiral lines as constant in the frequency range) show tl2€l
existence of a similar dispersive behavior of the fundamental
modes in the considered range of the chirality. Specifically,
there appear two zones of frequencies in the dispersion curvidt
low-frequencies range (the greater the chirality the lesser the
phase constant), and high-frequencies range (the increase gi2)
makes the phase constant decrease.) It is interesting to p 2|[°>1]t
out that chirality increases the dispersive character of the lin€s
and may even give place to the appearance of low-frequency

stants of the line has also been shown.
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